SCHUNK /*-

Hand in hand for tomorrow




Imprint

Copyright:
This manual is protected by copyright. The author is SCHUNK SE & Co. KG.
All rights reserved.

Technical changes:
We reserve the right to make alterations for the purpose of technical improvement.

Document number: 1559896

Version: 01.00 | 30/08/2023 | en

Dear Customer,

Thank you for trusting our products and our family-owned company, the leading technology
supplier of robots and production machines.

Our team is always available to answer any questions on this product and other solutions. Ask
us questions and challenge us. We will find a solution!

Best regards,
Your SCHUNK team

Customer Management

Tel. +49-7133-103-2503
Fax +49-7133-103-2189

cmg@de.schunk.com

@ Please read the operating manual in full and keep it close to the product.

2 01.00 | 2D Grasping-Kit | Software manual | en | 1559896



Table of Contents

1 Simple ProtoCol GENEIal ccceeeeeeeeeeeeececencccccccnccccccsssccccsssscscsssssccsssssccscsssscsce L
L I 0] Y= 11 - N L
L D - | = T 1Y/ 0 1= N L
LR =T £ o] g 11 S PP PP L
LI = 011 N 5

2 Simple Protocol Prefix.......... cececccesssssccscnns cecccceesssssccccnns cececessssnssccccane ceeees 6
P28 B I 1Yo 11 | PPN 6
D o -1 { b G PP 6
D0 T T | N 6

3 SimMPIe ProtOCO] V2 ...ceeeeeeeeececceeccccccnccccccessccocesssccscsssscssssssssssssssssssssscssssss 7
B B - 1Yo 11 PO PPN 7
B0 o -1 { PP 7
I T & 1< T= e = PPN 7

3.3.T  COMM LY P i e 7
3.3.2  TePlY COA@ e e 7
3.3.3 MO Y P i e 8
L T oY= e 0 < 8
I B =¥ o 1T = S 8
N G = ] o] = S 10

ll- Visualization ©00000000000000000000000000000000000000000000000000000000000000000000000000000000000000 13

I o= 11T ] [ 14

01.00 | 2D Grasping-Kit | Software manual | en | 1559896 m 3



1

1.1

1.2

1.3

Simple Protocol General
Low-level pipeline interface for robot controllers.

The simple protocol is a communication protocol sitting on top of
the TCP/IP stack. The protocol design is simple and
straightforward, and thus feasible to implement even on the
most archaic robots and industrial controllers.

Conventions

* Port: The server listens on tcp-port 42001

e Endianness: The order of multi-byte fields is big-endian

* Floating-point numbers: Single IEEE-Standard (IEC-60559)

e Signed integers: Signed integers are represented in two's
complement notation
e Units of measure: Unless otherwise specified, lengths are

measured in meters [m], and angles are measured in radians
[rad]

Data Types

Following data types are define:

e signed integers: int8, int16, int32

e unsigned integers: uint8, uint16, uint32
e floating point numbers: float32

The number suffix of a data type denotes its size in bits (e. g.
int16 is two bytes long).

Versioning
The server is backwards compatible.

Clients using earlier protocol versions will be served as expected
and won't even notice the version mismatch. The server always
replies with the same version number in the prefix as the one
used in the requests.

However, if a server is outdated such that its protocol version is
lower than the client's protocol version, the server will always
reply with an empty message. The message prefix will have its
length-field set to zero and its version-field set to the server's
highest supported protocol version. In this case, clients are
advised to alert the user that their server is outdated and
incompatible with their current client version.

01.00 | 2D Grasping-Kit | Software manual | en | 1559896



1.4 Layout

Each message frame comprises two parts: an invariant prefix that
remains consistent across different protocol versions and a
version-specific section. The details of these parts are elaborated
in their respective chapters.

01.00 | 2D Grasping-Kit | Software manual | en | 1559896 m 5



2

2.1

2.2

2.3

Simple Protocol Prefix

Invariant part of the low-level pipeline interface for robot
controllers.

Layout

Prefix Data

version length data ...

Prefix

All messages start with a prefix defining the protocol version and
the size of the remaining message.

The prefix is invariant and does not change between different
protocol versions.

version length
type uint1é6 uint32

e version: The protocol version.

* length: The size of the remaining message in bytes (max.
4 GB), excluding the prefix itself (6 B). The server will not
verify the correctness of this field. An incorrect length value
will corrupt the session and, if the corruption remains
unnoticed, lead to undefined behavior.

Data

The actual message content. The structure is version-specific and
is described in the version chapters.

01.00 | 2D Grasping-Kit | Software manual | en | 1559896



3 Simple Protocol v2
Version 2 of the low-level pipeline interface for robot controllers.

3.1 Layout

Prefix Header Body

comm reply msg

..... type  code type data ...
3.2 Prefix
see » 2.2 [V 6].
3.3 Header
The header is the part that encodes the message type and its
intent.
comm type reply code msg type
type uint8 uint8 uintlé6
3.3.1 comm type
value description
0x00 request
0x01 response
3.3.2 reply code
value name description
0x00 success  Receiver processed the message succesfully
0x01 failure  Receiver encountered a failure processing the

message (msg type is zeroed)

NOTE
The reply code is ignored in requests.

01.00 | 2D Grasping-Kit | Software manual | en | 1559896 m



3.3.3

3.4
3.4.1
3.4.1.1

msg type
The message types and their body layouts are explained in detail
in the next paragraph:

value name description
general

0x00 00 reserved/unused
0x00 01 GET_PROTOCOL_VERSION Get the server's protocol version

0x00 02 GET_STATE Get the server's current state

0x00 03 REGISTER_CLIENT Register the client's robot system
to the server

grasping

0x0100 GET_GRASP Get a grasp for the current scene

0x0101  ACKNOWLEDGE_GRASP  Acknowledge that a grasp has
been successful

Message Types
General

GET_PROTOCOL_VERSION
Returns the server's highest supported protocol version.

This is useful to see if the client's version is outdated or not. If
this is the case, the client is advised to inform the user
accordingly.

Request Body
The request body is empty.

Response Body
version
type uintlé6
e version: The server's protocol version.

01.00 | 2D Grasping-Kit | Software manual | en | 1559896



3.4.1.2 GET_STATE
Retrieves the server's state.

Request Body
The request body is empty.

Response Body

state
type uint8
e state:
value name description
0x01 INIT The server is initializing
0x02 OPERATIONAL The server is operational and
ready to serve requests
0x03 STOPPED The server has stopped operating
0Ox0L ERROR The server has encountered a

critical error

3.4.1.3 REGISTER_CLIENT

Registers the client's robot system (for informational purposes).
This message should be sent right after the connection has been
established. However, there are no restrictions on when to send
and how often.

Request Body
Contains information about the client's robot system. If the

client's robot system is not officially supported (see client table),
then simply do not send anything.

client
type uint8
e client:
value name vendor
0x01 UR Universal Robots
0x02 Kuka Kuka
0x03 Yaskawa Yaskawa
Ox0L Fanuc Fanuc
0x05 ABB ABB
0x06 HORST fruitcore robotics
0x80 Siemens PLC Siemens

Response Body
The response body is empty.

01.00 | 2D Grasping-Kit | Software manual | en | 1559896 m



3.4.2 Grasping

3.4.2.1 GET_GRASP
Requests an exterior two-finger grasp for the current scene.

Request Body
object class mode pose format

type uint8 uint8 uint8

* object class:The class id of the target object. The value 0
denotes a random object.

* mode:

value name description

0x01 ACTIVE_GRASP The returned grasp must match
the target object's active grasp
definition

0x02 ANY_GRASP The returned grasp must match
any of the target object's grasp
definitions

0x03 AUTO_GRASP ANY_GRASP mode with model-

free grasp-planning as fallback

e pose format: Specifies the pose format to use in the response
message.

value name description

0x01 Matrix Homogeneous 4x4 transformation matrix in
row-order

0x02 Angle-  [x,y,z,rx,ry,rz], with [x, y, z] the position and
axis [rx, ry, rz] the unnormalized angle-axis vector

Response Body

result object object pose pose stroke center

code class instance format offset
type uint8 uint8 uintl6 uint8 see float32 float32
details 3]

01.00 | 2D Grasping-Kit | Software manual | en | 1559896



¢ result code: Indicates the outcome of the grasp request.

value name
0x01 0K

0x02 NO_OBJECT
0x03 NO_GRASP
OxFF ERROR

description

The server has found a valid
grasp
The server could not find the

requested object (all fields after
"result code" are zeroed)

The server could not find a valid
grasp (all fields after "object
instance" are zeroed)

The server has encountered an
internal error (all fields after
"result code" are zeroed).

e object class: The class id of the target object.
e object instance: The instance id of the target object.
¢ pose format: The pose format used for the pose-field.

value name pose type

0x01 Matrix  float32[16]

0x02 Angle-  float32[6]
axis

description

Homogeneous 4x.L
transformation matrix in row-
order

[x,y.z,rx,ry,rz], with [x, y, z] the
position and [rx, ry, rz] the
unnormalized angle-axis vector

e pose: The grasp pose in the robot's base coordinate frame.
The type of this field depends on the value in the pose

format-field.

e stroke: The distance between both fingers to set before
approaching the object (in [m]).
Note: SCHUNK makes the assumption that the gripper is at
position zero when both fingers touch each other.

e center offset: The translational [x,y,z]-offset from the object

center to the grasp point in [m], expressed in the robot's base

coordinate frame.

01.00 | 2D Grasping-Kit | Software manual | en | 1559896

n



12

3.4.2.2 ACKNOWLEDGE_GRASP
Acknowledges that a specified object has been successfully

grasped.
Request Body

object instance
type uintlé6

e object instance: The instance id of the target object.

Response Body

result code object instance
type uint8 uint16

e result code:

value name description

0x01 0K The successful grasp has been
acknowledged

0x02 NO_OBJECT  The target object does not exist

e object instance: The instance id of the target object.

01.00 | 2D Grasping-Kit | Software manual | en | 1559896



L Visualization

A visualization of the latest detection result is provided as an
image resource that can be accessed via HTTP at:

http://<Server-IP>/monitor/latest result

01.00 | 2D Grasping-Kit | Software manual | en | 1559896 m

13



4

5 Examples

Get the server's highest supported protocol version (which is
version 2 in this example):

request: 0x00 0x01 0x00 0x00 0x00 0x04 | 0x00 0x00 0x00 0x01

response: 0x00 0x01 0x00 0x00 0x00 0x06 | O0x01 O0x00 0x00 0x01 | 0x0002

Get an auto grasp for a random object in the current scene in
angle-axis representation:

request: 0x00 0x01 0x00 0x00 0x00 0x07 | 0x00 O0x00 O0x01 0x00 | Ox00 0x03 0x02

response: 0x00 0x01 0x00 0x00 0x00 0x25 | 0x0l 0x00 0x01 0x00 | O0x01 0x01 0x00
0x01 0x02 O0x3F 0x80 0x00 0x00 0x40 0x40 0x00 0x00 0x40 0x40 0x00 0x00 0x40
0xEO 0x00 0x00 O0x11 0x22 0x33 0x44 0x11l 0x22 0x33 0x44 0x42 0x8A 0x00 0x00

Send a request with an unknown msg type:

request: 0x00 0x01 0x00 0x00 0x00 0x04 | 0x00 0x00 0x00 O0xOF

response: 0x00 0x01 0x00 0x00 0x00 O0x04 | 0x01 0x01 0x00 0x00

Get the state of an outdated server:

request: 0x00 0x01 0x00 0x00 0x00 0x04 | 0x00 0x00 0x00 0x02

response: 0x00 0x00 O0x00 0x00 0x00 0x00 |

01.00 | 2D Grasping-Kit | Software manual | en | 1559896



01.00 | 2D Grasping-Kit | Software manual | en | 1559896

15




SCHUNK ' °

SCHUNK SE & Co. KG
Toolholding and Workholding | Gripping Technology |
Automation Technology

Bahnhofstr. 106 - 134
D-74348 Lauffen/Neckar
Tel. +49-7133-103-0
Fax +49-7133-103-2399
info@de.schunk.com
schunk.com

Folgen Sie uns | Follow us

(1B JCN ~ RI@in]

Wir drucken nachhaltig | We print sustainable

01.00 | 2D Grasping-Kit | Software manual | en | 1559896

© 2023 SCHUNK SE & Co. KG

08-2023



	 Imprint
	1 Simple Protocol General
	1.1 Conventions
	1.2 Data Types
	1.3 Versioning
	1.4 Layout

	2 Simple Protocol Prefix
	2.1 Layout
	2.2 Prefix
	2.3 Data

	3 Simple Protocol v2
	3.1 Layout
	3.2 Prefix
	3.3 Header
	3.3.1 comm type
	3.3.2 reply code
	3.3.3 msg type

	3.4 Message Types
	3.4.1 General
	3.4.1.1 GET_PROTOCOL_VERSION
	3.4.1.2 GET_STATE
	3.4.1.3 REGISTER_CLIENT

	3.4.2 Grasping
	3.4.2.1 GET_GRASP
	3.4.2.2 ACKNOWLEDGE_GRASP



	4 Visualization
	5 Examples

